Skip to main content
Log in

Surface and interface studies of RF sputtered HfO2 thin films with working pressure and gas flow ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, hafnium oxide (HfO2) thin films were deposited on p-type silicon substrate by radio frequency magnetron sputtering at various working pressure ranging from 4 × 10−3 to 1 × 10−2 mbar and Ar/O2 flow ratio from 1:4 to 4:1. The morphological and electrical properties of the sputtered films were investigated and a correlation between the surface and electrical properties of the HfO2 films was established with the variation of sputtering parameters. The evolution of monoclinic structure of the hafnium oxide thin films was observed by XRD studies. The surface of the HfO2 films became rough with the increase in grain size at the sputter pressure of 8 × 10−3 mbar and Ar/O2 gas flow ratio of 1:4. The formation of HfO2 bond was seen from FTIR spectra. The oxide charge density has a lower value for the sputter pressure of 8 × 10−3 mbar and Ar/O2 gas flow ratio of 1:4 due to the evolution of larger grains. The interface charge density was found to be minimum at a sputter pressure of 8 × 10−3 mbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.H. Huang, P.C. Fan, K.H. Chen, IEEE Trans. Power Electron. 24, 5 (2009)

    Google Scholar 

  2. L.V. Goncharova, M. Dalponte, T. Feng, T. Gustafsson, E. Garfunkel, P.S. Lysaght, G. Bersuker, Phys. Rev. B 83, 115329 (2011)

    Article  Google Scholar 

  3. C. Choi, K.L. Lee, V. Narayanan, Appl. Phys. Lett. 98, 123506 (2011)

    Article  Google Scholar 

  4. R.L. Puurunen, A. Delabie, S.V. Elshocht, M. Caymax, M.L. Green, B. Brijs, O. Richard, H. Bender, T. Conard, I. Hoflijk, W. Vandervorst, D. Hellin, D. Vanhaeren, C. Zhao, S.D. Gendt, M. Heyns, Appl. Phys. Lett. 86, 073116 (2005)

    Article  Google Scholar 

  5. Tzu-Ray Shan, Bryce D. Devine, Travis W. Kemper, Susan B. Sinnott, Simon R. Phillpot, Phys. Rev. B 81, 125328 (2010)

    Article  Google Scholar 

  6. R.K. Nahar, V. Singh, A. Sharma, J. Mater. Sci. Mater. Electron. 18, 615–619 (2007)

    Article  Google Scholar 

  7. B. Aguirre, R.S. Vemuri, D. Zubia, M.H. Engelhard, V. Shutthananadan, K.K. Bharathi, C.V. Ramana, Appl. Surf. Sci. 257, 2197–2202 (2011)

    Article  Google Scholar 

  8. P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Sol. State Electron. 62, 44–47 (2011)

    Article  Google Scholar 

  9. J. Zhu, Z.G. Liu, Y. Feng, J. Phys. D Appl. Phys. 36, 3051 (2003)

    Article  Google Scholar 

  10. B.K. Park, J. Park, M. Cho, C.S. Hwang, K. Oh, Y. Han, D.Y. Yang, Appl. Phys. Lett. 80, 2368–2370 (2002)

    Article  Google Scholar 

  11. S. Lee, W. Kim, S. Rhee, K. Yong, J. Electrochem. Soc. 155(2), 96–98 (2008)

    Google Scholar 

  12. S.M.A. Durrani, Sens. Actuators B 120, 700–705 (2007)

    Article  Google Scholar 

  13. M. Szymanska, S. Gierałtowska, L. Wachnicki, M. Grobelny, K. Makowska, R. Mroczynski, Appl. Surf. Sci. 301, 28–33 (2014)

    Article  Google Scholar 

  14. G. Aygun, A. Cantas, Y. Simsek, R. Turan, Thin Solid Films 519, 5820–5825 (2011)

    Article  Google Scholar 

  15. M. Toledano-Luque, F.L. Martinez, E. San Andres, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, J. Rohrich, E. Strub, Vacuum 82, 1391–1394 (2008)

    Article  Google Scholar 

  16. T. Tan, Z. Liu, H. Lu, W. Liu, H. Tian, Opt. Mater. 32, 432–435 (2010)

    Article  Google Scholar 

  17. M. Khaskheli, P. Wu, R. Chand, X. Li, H. Wang, S. Zhang, S. Chen, Y. Pei, Appl. Surf. Sci. 266, 355–359 (2013)

    Article  Google Scholar 

  18. J.P. Kar, G. Bose, S. Tuli, Scr. Mater. 54, 1755–1759 (2006)

    Article  Google Scholar 

  19. V. Dave, P. Dubey, H.O. Gupta, R. Chandra, Thin Solid Films 549, 2–7 (2013)

    Article  Google Scholar 

  20. A.G. Khairnar, A.M. Mahajan, Solid State Sci. 15, 24–28 (2013)

    Article  Google Scholar 

  21. M. Toledano-Luquea, E. San Andres, J. Ole, A. del Prado, I. Martil, W. Bohneb, J. Rohrich, E. Strub, Mater. Sci. Semicond. Process. 9, 1020–1024 (2006)

    Article  Google Scholar 

  22. E.H. Nicolian, J.R. Brews, Metal, Oxide Semiconductor Physics and Technology (Wiley, New York, 1982), pp. 325–426

    Google Scholar 

  23. J.P. Kar, G. Bose, S. Tuli, Curr. Appl. Phys. 6, 873–876 (2006)

    Article  Google Scholar 

  24. J.P. Kar, S. Mukherjee, G. Bose, S. Tuli, J.M. Myoung, Mater. Sci. Technol. 25(8), 1023 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DST, India sponsored Indo-Korea Project (INT/Korea/P-16/2013) and partly supported by SERB Project (SR/FTP/PS-099/2012). This work also supported by the International Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant number: 2012K1A3A1A19038371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.C., Ghosh, S.P., Tripathy, N. et al. Surface and interface studies of RF sputtered HfO2 thin films with working pressure and gas flow ratio. J Mater Sci: Mater Electron 26, 6025–6031 (2015). https://doi.org/10.1007/s10854-015-3179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3179-9

Keywords

Navigation